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Abstract 1 

 Variation in habitat selection by the mountain goat is not well understood due to the 2 

difficulties of monitoring animal movement in all months of the year.  The use of GPS 3 

wildlife telemetry collars offered an opportunity to overcome this obstacle, however satellite 4 

acquisition problems associated with global positioning system (GPS) wildlife telemetry 5 

collars create an observational bias of animal locations towards areas of favorable signal 6 

reception.  To correct for this bias in data from GPS collared mountain goats Oreamnos 7 

americanus in the Cascades of Washington State I used an intensive field sampling exercise 8 

to calculate the amount of variation in position acquisition rates (PAR) explainable based on 9 

remotely sensed vegetation and topographic landscape characteristics in a geographic 10 

information system (GIS) framework.  To statistically model the predicted GPS position 11 

acquisition rate across the entire the mountain range, I used non-linear mixed modeling with 12 

Akaike’s Information Criteria (AIC) and a generalized estimating equation (GEE), 13 

autoregressive correlation structure (m =1), to account for the random effects of the binary 14 

clustered experimental design.  I used vegetation data from satellite imagery provided by the 15 

Interagency Vegetation Management Project (IVMP) and a 10 m digital elevation model 16 

(DEM) as predictor variables.  I sampled GPS PAR at 543 sites across two study areas, the 17 

western and eastern cascades, which cover roughly 5 million hectares.  I analyzed the data at 18 

two spatial scales, 25 m
2
 and 625 m

2
.  I developed the final model at the 25 m

2
 resolution 19 

using a single square extraction window and had an area under the receiver-operating curve 20 

(ROC) of 0.70 and 0.69, respectively.  Both models fit with expected ecological patterns.  21 

These two models were combined into one GIS raster file that predicted GPS PAR across the 22 

entire mountain range.  These data used with an inverse weighting scheme reduced the signal 23 

reception bias found in a habitat study of GPS collared mountain goats.  The correction factor 24 

helped to account for habitats likely used by coastal ecotype mountain goats but unfavorable 25 

to satellite acquisition.  These understandably widely overlooked habitats, lower elevation 26 

forests with dense canopy cover, may provide over-wintering sites for mountain goats.  I 27 

analyzed data collected over two years worth of tracking 39 GPS collared mountain goats, 28 

over 86,000 locations, in the Washington Cascades.  Each location was weighted with 29 

inverse of the predicted GPS PAR to account for the GPS bias.  I used a weighted logistic 30 

regression procedure with Akaike’s Information Criteria (AIC) to choose the most 31 



 v 

parsimonious model out of an a priori selected set of models.  Predictor variables were 1 

derived from vegetation layers developed by the Interagency Vegetation Mapping Project 2 

(IVMP) and a 10 m digital elevation models (DEM).  Candidate models were developed on 3 

the basis of ecological relevance and available GIS data.  I partitioned the data into eight 4 

datasets, based upon elevation quartiles of mountain goat locations and a northern and 5 

southern division of available sites.   The individual habitat maps were mosaiced into one 6 

map and compared with a map generated with the same models not taking into account the 7 

weighting factor.  The weighted models classified more terrain as habitat and had slightly 8 

higher classification accuracies.  The final product will assist with management activities, 9 

conservation planning and ecological studies of Washington's endemic mountain goat 10 

populations.       11 

12 
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WILDLIFE TELEMETRY GLOBAL POSITIONING SYSTEM (GPS) BIAS 3 

CORRECTION IN THE CASCADE MOUNTAINS OF WASHINGTON 4 

STATE, USA 5 
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Introduction 1 

The addition of Global Positioning System (GPS) receivers to wildlife radio telemetry 2 

collars has enabled automated position locating and data recording that has largely overcame 3 

seasonal, daily and weather related observational biases reflected in traditional wildlife 4 

telemetry studies.  Automated data collection reduced the stress and biases associated with 5 

repeated disturbance of study animals and decreased positional errors of animal locations.  6 

Refinements in hardware, software and the deactivation of selective availability has reduce 7 

positional error to 10 m or less under optimal conditions (Johnson & Barton 2004).  This 8 

level of accuracy generally exceeds the spatial resolution of satellite imagery and Geographic 9 

Information Systems (GIS) data layers used to model habitat.  (Rempel & Rodgers 1997; 10 

Rodges 2001; Di Orio et al. 2003).   11 

Despite these advantages, GPS receivers often fail to obtain a position under dense 12 

forest canopy or when topography blocks signals from orbiting satellites (Gerlach & 13 

Jasumbach 1989).  Ignoring this issue, when evaluating data from GPS-collared animals, 14 

provides a biased view of habitat use towards areas of favorable GPS reception (Rempel et 15 

al. 1995; Deckert & Bolstad 1996; Edenius 1997; Dussault et al. 1999; Gamo & Rumble 16 

2000; Licoppe 2001; Rodgers 2001; D’Eon et al. 2002; Taylor 2002; Di Orio et al. 2003; 17 

Frair et al. 2004; Cain et al. 2005; Sager 2005).  In light of these findings, I addressed the 18 

GPS Position Acquisition Rate (PAR) across the Cascade Mountain range of Washington 19 

State for incorporation into a habitat analysis of GPS collared mountain goats Oreamnos 20 

americanus. 21 

The Cascade Mountains of Washington State represent a sizeable portion of the 22 

historic range of the mountain goat (Johnson 1983).  Mountain goats inhabited the Pacific 23 

Northwest of the United States and coastal British Columbia Canada for at least the past 24 

12,000 years (Nagorsen & Keddie 2000).  This highly recognized, uniquely adapted ungulate 25 

has also been literally interwoven into the cultural histories of the indigenous people of the 26 

region.  Since European settlement, this charismatic species experienced a substantial 27 

population decrease in many parts of their native range (Table 1).  In particular, this decline 28 

has been readily apparent in the traditional tribal territories of the Sauk-Suiattle Nation, 29 

located in the vicinity of Darrington, WA with decreases of 70-90 over the last 40 years 30 

(Ryals, pers. com.)     31 
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Between 2003 and 2005, the Washington Department of Fish and Wildlife (WDFW) 1 

captured and collared 50 mountain goats in the Washington Cascades to establish a baseline 2 

study of mountain goat ecology.  They hoped to assess the magnitude, extent and causes for 3 

declines in Washington's endemic mountain goat populations.  As part of this study, to offset 4 

the aforementioned GPS bias, I have evaluated the relative influence of topography and 5 

vegetation on GPS PAR with a field-sampling regime.  I hypothesized that the rates at which 6 

GPS collars successfully record data were predictable based on remotely sensed vegetation 7 

and GIS derived topographic characteristics.  In Chapter one, I developed a predictive model 8 

encompassing the whole of the Washington Cascade mountain range to weight location data 9 

acquired from GPS-collared animals during a habitat analysis.  The final products were 10 

designed to assist in future wildlife management efforts, conservation activities and habitat 11 

connectivity analysis taking into account the observational bias generated by GPS wildlife 12 

telemetry collars towards areas of favorable satellite signal reception.         13 

Review of Previously Published GPS Bias-Correction Studies 14 

 The GPS collar bias issue has stimulated interest in the development of new 15 

methodologies to minimize these observational biases.  The typical methodology involves 16 

placing collars in the field, programmed to record waypoints at a consistent interval for a 17 

minimum of 24 hours.  The orbital geometry of the constellation of GPS satellites repeats 18 

once per sidereal day, about 23 hours and 56 minutes (Hoffmann-Wellenhof et al. 1997), so a 19 

24-hour sampling interval covers the full range of satellite geometries at a given site.  At 20 

each sample location, data from the collars yields GPS PAR, or the percentage of successful 21 

fix attempts.  Site characteristics either observed on the ground or derived from GIS layers 22 

provide predictor variable.  A statistical model built upon these data predicted GPS PAR 23 

based on the observed site conditions or across the entire landscape with a GIS. 24 

Since 1995, several published studies utilized this basic approach (Table 2).  These 25 

studies evaluated GPS performance across areas of a few tens of thousands of hectares.  26 

Many took place in Canada including studies in coastal and interior British Columbia (Taylor 27 

2002; D’Eon et al. 2002), Alberta (Frair et al. 2004), Ontario (Rempel et al. 1995) and 28 

Québec (Dussault et al. 1999).  Studies in the United States occurred in California (Di’Orio 29 

et al. 2003) the Black Hills of North Dakota (Gamo & Rumble 2000) and in the temperate 30 

forests of the Olympic Mountains of Washington State (Sager 2005).  The progression of the 31 
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these studies reflect an increased understanding and shift of focus from initially addressing 1 

the GPS PAR observational bias issues, to quantifying the effects of the bias and finally 2 

correcting for it.  For a more complete list of published studies see Cain et al. 2005.   3 

Methods 4 

Study Area   5 

The study area spanned the indigenous range of the mountain goat in the Cascades of 6 

Washington State (Johnson 1983) divided along the cascade crest into two regions; east 7 

(2,585,240 hectares) and west (2,744,521 hectares) (Fig. 1). The major ecological zones 8 

occupied by mountain goats included the subalpine and alpine communities and to a lesser, 9 

fairly unknown, extent the montane.  The Cascades house five stratovolcanoes, four of them 10 

over 3200 m, and numerous peaks surpassing 2000 m.  The combination of dense forests and 11 

narrow valleys at lower elevations and treeless ridgelines higher up provided a range of 12 

conditions for testing GPS receivers.  The spatial extent of the Inter-Agency Vegetation 13 

Mapping Project's Western and Eastern Cascades of Washington (O'Neil et al. 2002) defines 14 

the study area boundaries and provided the available remotely sensed vegetation data.      15 

The montane zone generally occurred between 450 m and 1050 m extending from the 16 

dense, lower elevation forests up to the beginnings of the subalpine zones.  In the western 17 

and northern Cascades, the Pacific Silver fir/ Western hemlock Abies amabilis/Tsuga 18 

heterophylla forests represent the most common forest community (Franklin & Dryness 19 

1988).  Common associated overstory species include: Douglas-fir Psuedotsuga menziesii 20 

(Mirb. Franco), Red alder Alnus rubra (Bong.) and Western red cedar Thuja plicata (Donn 21 

ex D. Donn).  The eastern slope of the Cascades have more drought tolerant and fire resistant 22 

tree species; ponderosa pine Pinus ponderosa (Dougl. ex Laws) dominate the landscape at 23 

lower elevations.  Common associates include Douglas-fir, Engelman spruce Picea 24 

engelmannii (Parry ex Engelm.), Subalpine fir Abies lasiocarpa (Hook. Nutt.) Western larch 25 

Laryix occidentallis (Nutt.) and Lodgepole pine Pinus contorta (Dougl. Ex Loud.).   26 

In mesic montane sites, these trees often occurr with Skunk-cabbage Lysichitum 27 

ameicanum, Ladyfern Athytium fillix-femina, Devils club Oplopanex horridum and 28 

Swordfern Polystichum munitum.  At slightly drier sites, common associates include 29 

huckleberry Vaccimuim alaskaense, dogwood bunchberry Cornus canadensis, Salal 30 

Gaultheria shallon, Vanilla leaf Achlys triphylla and Oregon Grape Berberis nervosa (Topik 31 
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1986).  At some very dry sites, especially further south in the range, madrone Arbutus 1 

menziesii and Ocean Spray Holodiscus discolor occur (Topik 1986).  At higher elevations 2 

Xerophyllum tenax, Cascade azalea Rhododendron albiflorum and Fool’s huckleberry 3 

Menziesia ferrugiea commonly grow (Brockway 1983).    4 

The subalpine zone ranged between 1050 m and 1500 m and consisted of a mixture of 5 

forests and meadows extending up to tree line.  The lower regions of the subalpine zone 6 

transition from western hemlock to mountain hemlock Tsuga mertensiana (Bong. Carr.)  7 

with tree stature often reaching full development.  Pacific silver fir grows across both the 8 

upper montane and into the subalpine zones.  At some of the higher elevations, subalpine fir 9 

and alaska-cedar Chamaecyparis nootkatensis (D. Don, Spach) exist.  Krummholz and dwarf 10 

shrub communities commonly develop at the higher elevations due to the effects of wind, 11 

snow and temperature (Taylor 1986). 12 

  The most pronounced subalpine meadows develop beneath the upper portions of tree 13 

line in avalanche paths (Taylor 1986) and after forest fires (Johnson 1983). Vegetation 14 

community types found within the subalpine include: snowbed (Saxifrage-Woodrush 15 

Saxifraga tomliei-Luzula piperi and Sedge Carex nigricans) mesic herb (Lupine Lupinus 16 

latifolis, Fescue Festuca viridula, Huckleberry Vaccinium deliciosum, sedge Carex 17 

spectabilis, Buckwheat Polygonum bistortoides, Valerian Valeriana sitchensis and Daisy 18 

Fleabane Erigeron pereginus var. scaposus) dwarf shrub (Heather Cassiope mertensiana, 19 

Mountain-Heath Phyllodoce empetriformis & P. glanuliflora, Crowberry Empetrum nigrum, 20 

Bearberry Arctostaphylos uva-ursi, Partridgefoot Luteka pectinata, Huckleberry Vaccinium 21 

deliciosum, Everlasting; Pusstoes Antennaria lanata, willow Salix nivalis & S. cacadensis 22 

and Mountain-avens Dryas octopetala) and dry gaminoid (Oatgrass Danthonia intermedia 23 

and Sedge Carex spectabilis, C. var.  pseudoscicrpoidea) (Douglas & Bliss 1977). 24 

The alpine zone, dominated by rock and ice and free of overstory vegetation, 25 

extended up from subalpine zone around 1500 m to the mountain summits.  The high alpine 26 

tundra provides areas for evaluating GPS-collar performance under the optimal conditions of 27 

no canopy and views of the sky that are unobstructed by topography (Rempel et al. 1995).  28 

The alpine and subalpine zones also typify common impressions and interpretations of 29 

mountain goat habitat.   30 
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Herbfields, fellfields, and boulder fields characterize this zone (Taylor 1986).  1 

Vegetation community types found within these features included: dwarf shrub (Mountain-2 

Heath Phyllodoce grandiflora & P. empetriformis and Heather Cassiope mertensiana), mesic 3 

herb (Lupine Lupinus latifolis and Fescue grass Festuca viridula), dry gaminoid (Oatgrass 4 

Danthonia intermedia, Reedgrass Calamgrostis purpurascens, Sedge Carex spectabilis, C.  5 

phaeocephala, C. scirpoidea var.  pseudoscicrpoidea & C. nardina, and Kobresia Kobresia 6 

myosuroides) and snowbed communities (Sedge Carex breweri C. capitata & C. scirpoide, 7 

Cinquefoil Potentilla diversifolia var. diversifolia, Goldenrod Solildago multiradiata, Willow 8 

Salix cascadensis and Fescue Festuca ovina) (Douglas & Bliss 1977).  9 

Field Work  10 

I tested collars throughout the study area during the summer of 2004, winter 2004-11 

2005 and summer 2005.  Prior to collection of field data, I benchmarked the Vectronic-12 

Aerospace GPS Plus collars (v6, Vectronic Aerospace, Berlin Germany) at a known location 13 

with an unobstructed view of the sky to ensure proper functioning (Moen et al. 1997).  For 14 

logistical reasons, I sampled sites near existing trail networks.  Random selection of field 15 

sites for collecting PAR data was not practical due to the rugged inaccessible terrain.  I 16 

sampled above the minimum expected elevation of a mountain goat, generally 1000 m, and 17 

placed collars at least 200 m apart.  Field placement of GPS units mimicked the height and 18 

orientation of a GPS unit on a collared mountain goat, approximately 1.0 m above ground.  19 

GPS units were secured with bamboo tripods or natural materials found on site, including 20 

saplings, tree branches, downed logs, stumps located and rocks.  Field measurement taken at 21 

each site for ground-truthing GIS variables included: aspect, slope, elevation and canopy 22 

cover.  Site selection focused on areas with relatively uniform vegetation characteristics 23 

within 30-50 m of the GPS units.  Ignoring this issue, and using sites near the edge of a forest 24 

or alpine meadow, for example, could have created small miss-registration of the GIS raster 25 

files resulting in differences between actual site conditions and the GIS data.  26 

GPS units were programmed to attempt a 3-minute fix every 30 minutes for no less 27 

than 24 hours (Frair et al. 2004).  Positional dilution of precision (PDOP) of the Vectronic-28 

Aerospace collars reached 48.6 when a fix attempt failed.  The collars ignored satellites 29 

within 5° of the horizon in order to minimize multi-path errors (Schulte, personal 30 

communication).  I calculated average positional location for all successful fixes for data 31 
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extraction and calculated PAR as the percentage of successful fix attempts (2D and 3D fixes) 1 

during the full duration of GPS unit deployment (D’Eon et al. 2002).   2 

 I also deployed a Trimble GeoExplorer3 handheld GPS unit (v1.20, Trimble 3 

Navigation Ltd., Sunnyvale, California USA) within 3 m of the collar at some of the sites to 4 

test relative GPS PAR between brands and to determine if GPS PAR model development was 5 

possible with alternative manufacturers once collars were unavailable.  Configuring the 6 

Trimble units with custom external battery packs enabled 24-hour continuous operation.  I 7 

programmed a 15-minute interval of fix attempts to match the 30-minute interval of the 8 

Vectronic collars.  I set the Trimble horizontal dilution of precision (HDOP) mask to 60 9 

initially, the signal to noise ratio mask to 1 and an elevation mask of 5°.  I reset the HDOP to 10 

48.6 after preliminary data collection to match the Vectronic units.  After analyzing the 11 

performance of Vectronic versus Trimble data from the summer of 2004, I analyzed the 12 

relative performance of Vectronic units.  During the winter of 2004-2005, I tested the 13 

Vectronic collars against each other to look at simultaneous performance of the collars under 14 

equivalent site conditions.  At a limited number of sites I placed two collars within 1 m of 15 

each other programmed to record fixes on the same 30-minute interval.   16 

GIS Data 17 

Vegetation Predictor Variables: 18 

Variables derived for statistical modeling of GPS PAR came from existing, 25 m 19 

resolution, raster files created by the Interagency Vegetation Mapping Project (IVMP), 20 

utilizing Landsat imagery from the mid-1990's (O’Neil et al. 2002; Browning et al. 2003).  21 

The IVMP data consists of four vegetation layers: percent total vegetation cover (TVC), 22 

percent conifer cover (CC), percent broadleaf cover (BC) and quadratic mean diameter of 23 

overstory trees (QMD).  Each of these four layers the IVMP provids as continuous variables, 24 

but recommends subdividing each layer into three or four user-defined categories based on 25 

tradeoffs between accuracy and category size.   To remain consistent with the release 26 

documentation of the IVMP data sets and accuracy assessment, I classified each vegetation 27 

layer into discrete categories based on the frequency distribution of the number of sites in 28 

each class (Table 3).  I attempted to maintain an even balance of the number of sites in each 29 

class.  Documentation provided by IVMP indicates this categorization of data layers with 30 

classification accuracies of approximately 78% (TVC), 73% (CC), 46% (BC) and 62% 31 
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(QMD) for the westside and 68% (TVC), 55% (CC), 61% (BC) and 57% (QMD) for the 1 

eastside. 2 

Topographic Predictor Variables: 3 

I derived topographic predictor variables from a 10 m digital elevation model (DEM).  4 

I masked the necessary DEM to the spatial extent of the IVMP data and resampled the pixel 5 

size to 25 m.  In addition to elevation, I created slope, aspect and sky visibility (Deckert & 6 

Bolstad 1996; Gamo & Rumble 2000; D’Eon et al. 2002) data layers.  The sky visibility 7 

layer considered the uneven distribution of GPS satellite orbits in the sky.  The existing 8 

constellation of GPS satellites, distributed in 6 orbital planes inclined at 55° relative to the 9 

equator (Hoffmann-Wellenhof et al. 1997), dictates that no GPS satellites pass over a 10 

substantial portion of the northern portion of the sky.  In generation of the sky visibility layer, 11 

I excluded portions of the sky within this “hole” from the calculations and expected samples 12 

located on northerly aspects to achieve lower PAR then those on southerly ones (Appendix 13 

A). 14 

Stratification 15 

 The logistical challenges associated with sampling the full range of conditions across 16 

a 5 million hectare study area warranted substantial consideration.  Examination of the IVMP 17 

and DEM files insured field-sampling efforts focused on the major combinations of GIS 18 

derivable topographic and vegetation site characteristics in the region.  I stratified both study 19 

areas using a merged set of predictor variables (Table 4) namely forest type (based on first 20 

three IVMP layers), QMD classes, slope combined with aspect (flat, steep and north facing, 21 

or steep and south facing) and sky visibility.  I used identical stratification rules for both 22 

areas with the exception of QMD classification.  Cross-tabulation resulted in 81 different 23 

combinations of these four variables in the western half of the study area and 54 in the 24 

eastern half.  Due to logistical constraints, the majority of field sampling on the western slope 25 

concentrated in the northern portion (Mount Baker-Snoqualmie National Forest.) of the study 26 

area and on the eastern slope in the southern portion (Wenatchee National Forest).   27 

Data Analysis  28 

Extraction: 29 

 For each sample site, I extracted predictor variables from the IVMP and DEM layers.  30 

I developed two sets of predictor variables for each half of the Cascades (Table 5).  The first 31 
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sets of variables were extracted for the single 25 m by 25 m grid cell that contained the 1 

sample site.  The second set of predictor variables were extracted for a three by three or 9 cell 2 

(75 m by 75 m) window that centered on each sample site.  These two data sets enabled 3 

examination of the relationship between GPS performance and site conditions at two spatial 4 

scales.    5 

Modeling:    6 

I initially examined the breadth of coverage that field sampling efforts yielded based 7 

upon the study area stratification for both.  I looked at relative performance of GPS units 8 

between brands and among collars and screened for outliers based on cluster size and 9 

improbable GPSPAR ranges. 10 

I used non-linear mixed modeling logistic regression, information theory and 11 

generalized estimating equations (GEE) to model GPS PAR as clustered binary responses 12 

(Pendergast et al. 1996; Heagerty 1999; Horton & Lipsitz 1999; Hosmer & Lemeshow 2000; 13 

Teachman & Crowder 2002).  Fix attempts at each trial site, coded as successful or not, had 14 

the same predictor variables over the course of the entire sampling period.  The lack of 15 

independence due to repeated observations at each sample site required modeling of the 16 

internal correlation structure by means of a GEE.  The GEE modeling changed the values of 17 

the standard errors bounding the parameter coefficient estimates from those obtained by 18 

ordinary logistic regression.  Use of the auto-regressive (m=1) GEE was based on the notion 19 

that the correlation structure of the waypoints clustered by site had some diagonal 20 

relationships.  The fact that the constellation of the GPS satellites repeats just short of a full 21 

24 hour day meant that the correlation structure within sites shifted as a function of position 22 

within the cluster. 23 

For each of the two spatial resolutions, I a priori-selected a series of models for 24 

testing (Burnham & Anderson 2002).  I tested a global model utilizing all of the applicable 25 

predictor variables and selected model subsets.  I selected the most parsimonious models 26 

based on non-linear mixed modeling procedure (Appendix B) and the AICc for each 27 

extraction window.  I calculated the area under the receiver-operating curve (ROC) for both 28 

spatial scales' most parsimonious model using the ROC package in R (Gentleman et al. 29 

2004).  The parameter estimates, confidence intervals and robust standard error estimates 30 

were generated with SAS (8.0, SAS Institute Inc. Cary, NC) using an auto-regressive GEE.  I 31 
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used the resolution in the applied models that optimized their ROC scores (Pearce 2000) and 1 

calculated variance inflation factors (!) for both provinces.  2 

I analyzed site level GPS PAR data based on the most parsimonious models for the 3 

optimal extraction window.  I randomly split the data in half and regenerated parameter 4 

estimates with the selected models using a model building subset and calculated GPS PAR 5 

for the remaining model testing data.  I applied the model testing data created from all 6 

acquisition attempts to the site level data of each GPS PAR test site and plotted observed 7 

GPS success against the predicted GPS PAR of each trial site.  I calculated the coefficient of 8 

determination to quantify the amount of variation explained by the models (Menard 2000) 9 

I painted predictive maps of GPS PAR for each province and finally merged them 10 

into one complete data layer.  I used ArcMap 9.0’s Spatial Analyst Raster calculator in order 11 

to calculate the pixel-by-pixel values of predicted GPS PAR across both study areas.  I 12 

mosaiced the two study areas together to form one layer for the entire Cascade Range of 13 

Washington State.  I designed the final data layer to incorporate into a habitat analysis based 14 

upon an inverse weighting scheme of predicted GPS PAR for a fix acquired from collared 15 

animals.  These final data layers calculated the predicted GPS PAR for each 25 X 25 m pixel 16 

based on the logit formula (eqn 1) and the predicted probability (eqn 2). 17 

 18 

Y= ß0 + ß1 X1 + ß2 X3 +…+ ßp Xp + e eqn 1 19 

 20 

GPS PAR = ExpY/(1+ExpY).  eqn 2 21 

Results 22 

Ground Truthing 23 

 A correlation analysis showed a high degree of correlation between field 24 

measurements of topographic features and GIS predictor variables.  Elevation measured in 25 

feet in the field and the data from the 10 m DEM had a simple correlation coefficient of R = 26 

0.92.  Aspect and slope, both derived from the 10 m DEM had values of R = 0.56 and R = 27 

0.60, respectively.  Vegetation data recorded in the field with a spherical densiometer and 28 

total vegetation cover derived from the IVMP as a continuous variable had a lower value of R 29 

= 0.37 (Zar, 1996).    30 
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Stratification 1 

During the summer of 2004, I sampled GPS PAR at 209 sites in the western 2 

Cascades, 64 sites in the winter of 2004-2005 and 51 more in the summer of 2005 for a total 3 

of 324.  During the summer of 2005, I sample 219 sites on the eastern side of the cascades 4 

for a grand total of 543 sites across the entire Washington Cascades.   5 

Of the 81 possible combinations of variables (Table 4) in the west side stratification 6 

model, 42 conditions each individually covered more than 0.5% of the study area for a total 7 

of 94.33% of the western cascade province.  I sampled 39 of these 42 combinations.  The 8 

three combinations omitted, defined as Mixed/Broadleaf forests with varying topography, 9 

covered 2.59% of the study area.  All together, west side sampling efforts covered 91.74% of 10 

the defined stratification classes by area.   11 

Of the possible 54 combinations of variables on the east side, 34 each individually 12 

covered more than 1% of the study area, for a total of 88.9% of eastern cascade province.  I 13 

sampled 33 of these 34 stratifications for a grand total of 94.2% of total area.  One 14 

dominating cover type (flat open sites with high sky visibility) accounted for 21.6% of the 15 

total area, and 16.4% of the samples.  16 

By elevation, the distribution of our sample sites was similar to that of over 30,000 17 

mountain goat locations (from over 40 mountain goats).  I over-sampled slightly at lower 18 

elevation (<1,000 m) and under-sampled slightly at higher elevations (>1,600 m).         19 

   20 

Collar comparison 21 

Trimble vs. Vectronic: 22 

 Of the 138 sites with both a Trimble GeoExplorer3 data logger and a GPS collar the 23 

correlation coefficient (Zar 1996) of GPS PAR between these units was R = 0.67 (Fig. 2).  24 

Most of the results of GPS PAR fell within the 90-100% range.  25 

Vectronic vs. Vectronic: 26 

 Of the 16 sites during the winter of 2004-2005, I placed two Vectronic collars under 27 

“identical” conditions to assess relative GPS PAR.  The correlation coefficient (Zar 1996) of 28 

GPS PAR between these sites was R = 0.83 (Fig. 3).   29 
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Global positioning system position acquisition rate; GPS PAR 1 

Vectronic Collars: 2 

The 324 western cascade sample sites originally consisted of 20,740 acquisition 3 

attempts.  I removed seven sample sites entirely due to poor GPS PAR and only used a 4 

maximum of 48 attempts per sample site for computational reasons.  This reduced the data 5 

set to 15,550 acquisition attempts.  I retained all the 219 eastern cascade sample sites tallying 6 

11,057 acquisition attempts since the data had a smaller range of sample site fix attempts.  7 

The more even sampling allowed for successful modeling of the correlation structure.  Large 8 

differences in the number of fix attempts per cluster caused statistical program failure.   The 9 

average overall success rate in the western study area was 78.8% and 92.4% in the east.   10 

Out the entire set of a priori selected models, the three highest ranked models in each 11 

data set had Akaike's weights >0.1 (Table 6).  The most parsimonious western cascade model 12 

had an area under the ROC of 0.70 based on a one cell window and 0.69 based on a nine cell 13 

extraction window.  This indicated a slightly better ability of the one cell western cascade 14 

model to correctly differentiate between predicted GPS success and observed success then 15 

the nine cell extraction window.  The western cascade nine cell extraction window also had 16 

small effect size (<.001) for two variables and multiple confidence intervals bounding zero.  17 

The eastern cascade models had nearly equivalent areas under the ROC (0.68) based on a one 18 

cell window and a nine cell window.  Considering that both spatial resolutions returned the 19 

same model parameters for the most parsimonious eastern province models this result was 20 

not unexpected.  I opted to use the western cascade model based on a one cell extraction 21 

window due to the area under the ROC and for consistency sake, the same spatial resolution 22 

on the east side.   23 

The coefficients for the one cell extraction windows for Cascade GPS PAR (Table 7 24 

& 8) indicated strong suggestions of significance and confidence intervals that did not bound 25 

zero.  These models also have similar variable types, the cosine of aspect in radians and one 26 

entire class of categorical vegetation variables.  The global models' yielded variance inflation 27 

factors for the western province (! = 8.4) and eastern province (! = 19.5) indicating some 28 

structural lack of fit.   29 

Analysis of the coefficient of determination based on randomly splitting the data and 30 

regenerating parameter estimates based upon the previously selected model returned similar 31 
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values for both provinces.  The western cascades model (R
2 
= 0.175) and the eastern (R

2
 = 1 

0.184) explained almost 20% of the variation of GPSPAR based on remotely sensed 2 

vegetation and topographic predictor variables (Fig. 4 & Fig. 5).  3 

Mountain goats: 4 

I looked at approximately 10,000 GPS waypoints over the course of two years of 5 

summer and winter data from goats in the Mt. Baker-Snoqualmie National Forest.  I 6 

arbitrarily defined summer and winter seasons by dates; as July 1
st
 to August 15

th
 and 7 

November 15
th

 to January 1
st
, respectively.  Summer GPS PAR rates from collared goats 8 

exceed 50% for each animal with the majority of rates above 80% ( x = 81%).  Conversely, as 9 

expected, most winter GPS PAR rates decreased and were generally around 40% ( x =44%) 10 

(Fig. 6).  11 

 12 

Painted PAR map 13 

To include estimated GPS PAR  (Fig. 1) into a habitat analysis across the entire study 14 

area, I created a data layer based on the selected model based on the one cell extraction 15 

window (Table 7 & 8).  The western cascade model included the cosine of aspect in radians 16 

and the amount of coniferous coverage while the eastern cascade model included the cosine 17 

of aspect in radians and the amount of total vegetation cover.  As expected, the cascades 18 

generally showed a much greater probability GPS PAR east of the pacific crest.  19 

Surprisingly, southerly aspects show a lower probability of success throughout the range.  A 20 

closer examination of the odds-ratios of obtaining of GPS fix by aspect binned into the eight 21 

cardinal direction revealed this pattern in both data sets.  The final model also only yielded a 22 

range of values from 64% to 99%.     23 

 24 

Discussion 25 

The predictive ability of the bias correction model developed based on the one cell 26 

extraction window for the Cascades of Washington performed as expected based on the 27 

range of values previously reported in the literature.  This study however, encompassed a 28 

much larger area and therefore intensive sampling scheme and stratification.  I over sampled 29 

lower elevations where expected bias in the mountain goat data prevailed.  I omitted a few 30 

areas of low topographic relief and vegetative obstructions from the sampling.  Collar 31 
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comparison between brands dismissed future use of Trimble Geo3 Explorer's from inclusion 1 

in model development.  Comparison among Vectronic units and predictive power suggested 2 

that micro-site features played a critical and hereby unexplained role in GPS PAR.  The final 3 

chosen models for both sides of the cascades fit with ecological expectations and had 4 

expectable ROC scores but a measure of over dispersion entering the data.  The final product, 5 

a GIS raster dataset, incorporated into habitat modeling as the inverse of expected GPS PAR 6 

reduced observational bias of GPS collared mountain goats.    7 

Stratification 8 

At 5 million hectares, this analysis covered a much larger area than previously 9 

published studies of GPS PAR both in terms of the number of sample sites and the spatial 10 

extent of the study area.  I felt confident that the stratified sampling scheme provided 11 

adequate coverage in order to extend the results to the entire study area and range of 12 

conditions therein.  On the west side, the combinations of vegetation and topography that I 13 

omitted represented mixed and broadleaf forest types that I did not expect to be used by 14 

mountain goats nor did I expect to be of any consequence to GPS PAR due to the 15 

predominately evergreen nature of the forest communities in western Washington.  On the 16 

eastside, I did not sample stratification classes that composed 5.80% of the study area.  Only 17 

one of these classes (southern facing open sites with sky visibility of 61-70%) composed 18 

more than 1% of the study area individually.  Without empirical evidence, I expected a high 19 

GPS PAR at such sites with this classification. 20 

The elevation distribution of sample sites resembled the distribution of available 21 

locations obtained from GPS-collared mountain goats.  I slightly over-sampled lower 22 

elevations since these elevations typically had lower PAR due to denser forest cover and 23 

greater topographic obstructions.  I anticipated that these sites presented greater challenges 24 

for adequately characterizing habitat use due to lower PAR.  The elevation distribution of 25 

bias correction sample sites accounted for this expected range of data loss. 26 

GPS data loss, and subsequent observational bias, from collared goats occurred more 27 

often in the winter when mountain goats descend to lower elevations (Fig. 6).  Data acquired 28 

over two years of collection from collared animals thus exhibited the anticipated GPS bias 29 

that PAR-modeling efforts reduced.  I felt justified applying the final GPS PAR model to the 30 

entire study area due to careful stratification of sampling across the full range of conditions 31 
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occurring in the Cascades of Washington in accordance with the IVMP release 1 

documentation (O’Neil 2002 et al.; Browning et al. 2003) and available GIS topographic 2 

data. 3 

Collar Comparison 4 

 In the side-by-side comparison of GPS units between brands neither the Trimble 5 

Geo3Explorer nor the Vectronic-Aerospace unit consistently outperformed the other.  The 6 

low correlation between brands (Fig. 2) and the slightly higher correlation among Vectronic-7 

Aerospace collars (Fig. 3) contradicted my expectations.  These poorly correlated results 8 

suggested a performance difference between brands or possibly variation in performance 9 

among individual GPS units of one or both brands.  I did not expect nor test for this 10 

possibility and found these results warranted dismissal of a bias correction model including 11 

any GeoExplorer3’s data.    12 

Given that these units were positioned a short distance apart (up to 3m), another 13 

possibility was that the differences in the position of tree boles and small canopy gaps 14 

relative to each unit may have been enough to block satellite signal access to a unit.  The 15 

slightly higher correlation between the Vectronic units might be due to the use of identical 16 

units or it may simply have reflected the fact that these units were placed right next to each 17 

other rather than the maximum of 3 m apart.  If this is indeed the case, then the correlation 18 

coefficient  (r = 0.67) of the Trimble-Vectronic pairing provided a rough estimate of how 19 

much variability in PAR was explained on the basis of macro-scale site conditions derived 20 

from GIS data files.   21 

Although the macro-scale conditions of vegetation and topography for both collars 22 

were identical, micro-site conditions, such as positioning of tree boles and canopy gaps, may 23 

have been quite different.  The increased correlation coefficient among units placed closer 24 

together suggested the importance of fine scale features on GPS PAR.  The remaining 25 

variation in PAR possibly controlled by micro-site conditions might be described on the basis 26 

of detailed stem maps and hemispherical photographs of the canopy.  In principle, these 27 

measurements could be obtained for a limited number of sample points but unpractical to 28 

utilize over any study area of reasonable size.  Another alternative might incorporate Light 29 

Image Detection and Ranging (LIDAR) data (Lefsky et al. 2002).  LIDAR made it possible 30 

to quantify aspects of forest canopy structure including canopy height and vertical biomass 31 
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distribution quickly and continuously over large areas.  As LIDAR gains availability, 1 

incorporation of these data into GPS PAR analyses might facilitate characterization of micro-2 

site features at a finer scale, both in terms of vegetation and topography.       3 

Global positioning system position acquisition rate; GPS PAR 4 

 The final model developed for the Washington cascades predicted GPS PAR across 5 

mountain goat habitat and reduced observational bias generated by vegetative and 6 

topographic features of the landscape.  Final predictor variables included: the total vegetation 7 

cover, coniferous coverage and aspect.  The predictive model of GPS PAR developed from 8 

stationary collars sampled across the mountain range performed within the range of 9 

expectation based on previous research in this field.  This supported the application of a bias 10 

correction factor to analysis of GPS data from collared mountain goats.         11 

Once final models were selected for both extraction window sizes and for both study 12 

areas, I needed to select one or the other for final development.  I opted to use the area under 13 

the ROC curve in order to distinguish if the one cell or the nine cells extraction window 14 

performed better.  On the west side, the small difference between 0.69 (nine cell) and 0.70 15 

(one cell) warranted use of the one cell model.  The east side model areas under the ROC 16 

curves were virtually identical, so in order to remain consistent with the west side model I 17 

opted to use the one cell extraction window.  Values >0.70 indicated “a reasonable 18 

discrimination ability appropriate for many uses,” (Pearce & Ferrier 2000).  The final model 19 

thus utilized one cell (25 m x 25 m) extraction window for the entire study area.     20 

After selecting the models developed on the one cell extraction window, I tested the 21 

global models of both data sets for over dispersion and goodness of fit.  Variance inflation 22 

values much greater then 4 indicated structure lack of fit and over dispersion of the data for 23 

both models (Burnham & Anderson 2002).  The predictive model did not perform well at low 24 

predicted probabilities (<0.60) when compared with observed PAR rates, displaying poor 25 

model refinement (Fig. 4).  The final data layer, however, had values ranging from 0.64 to 26 

0.99.   27 

These findings of predicted GPS PAR and low correlation among GPS units placed at 28 

the same site suggested an unmeasured component of the forest canopy heavily impacting 29 

GPS PAR.  This, again, remained consistent with prior studies on this subject that explained 30 

only a portion of GPS PAR bias (Table 1).  This GPS PAR bias correction study ultimately 31 
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only reduced, but did not eliminate, bias due to satellite signal blockage.  The scale that 1 

satellite signal interference occurred most likely surpasses the scale at which the predictive 2 

model operated.  A broad characterization of the landscape, such as the 25 m resolution level, 3 

characterized those types of habitats where micro-site heterogeneity was likely to increase 4 

(i.e. increased canopy cover, larger trees and more conifers) but did not account for all site 5 

specific factors determining GPS PAR.  Nevertheless, this model explained nearly one fifth 6 

of the variation in GPS PAR.   7 

An alternative approach considered to correcting for GPS bias involved an iterative 8 

process to estimate missed animal locations based on predicted GPS PAR, known animal 9 

locations, and theoretical movements across the landscape (Frair et al. 2004).  This approach 10 

however, warranted far more intensive data management, calculations and corrections for 11 

individually missed animal locations.    12 

Mapping 13 

The final data layers predicted GPS PAR for collared mountain goats across the 14 

western and eastern halves of the Washington Cascades.  These combined into one final data 15 

layer predicting GPS PAR across both IVMP Washington Cascade regions.  Much of these 16 

regions lie below 800m elevations beneath our minimum sampling efforts.  The overriding 17 

nature of vegetation variables impacting GPS PAR more so than topography allow 18 

reasonable extrapolation of the model to these lower elevation.  The analysis indicated that 19 

elevation alone was not a strong predictor of PAR.  This suggested that the model performed 20 

adequately even at low elevations.   Examination of the eastern reaches of the data layer 21 

where the mountains begin to merge with the central Washington highlands and deserts 22 

predicted a high PAR, as expected.  Closer examination of detail on the map provided one 23 

counter intuitive finding.  In the Washington Cascades, southern facing slopes predicted a 24 

lower GPS PAR, not what was expected based on the satellite sky plot  25 

Applying such a model outside the study area and with different hardware was not 26 

recommended by any of the previous authors published in this field of research.  I certainly 27 

agreed with the notion of not applying this model to areas outside the Cascades of 28 

Washington (although areas of the Oregon Cascades might have applied), however I 29 

considered the merits of applying this data layer to other GPS collared wildlife with in the 30 

region.  The fundamental decision to do so lies within any future projects’ objectives, 31 
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resources available, known improvements or difference in hardware, margins of error and 1 

costs of a Type I or Type II error.    2 

3 
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 1 

Tables  2 

Table 1:  Population estimates of mountain goats across portions of their native range since 3 

the 1960's depicting a long-term decline in the population.  4 

     5 

British Columbia 6 

• 1961-est. 100,000 7 

• 1977-est. 63,000 (Macgregor 1977) 8 

• 2000-est. 36,000-63,000 (Côté and Festa-Bianchet 2003) 9 

Washington 10 

• 1961-est. 10,655 11 

• 1983-est. 7350 (Johnson 1983) 12 

• 2005-est. 3500-4000 (Rice pers. comm. 2005)   13 

Entire Range-introduced and native 14 

• 2000-est. 75,000-110,000 (Côté and Festa-Bianchet 2003) 15 
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 1 

Table 2: Prior studies of GPS wildlife telemetry observational biases 2 

Author   Test  Test Statistic  Independent Variable 3 

• Rempel et al. 1995 
1
LR  X

2
  (P < 0.001)  tree spacing 4 

• Dussault et al. 1999 
2
SMLR R

2
= 0.16 (fall)  tree height   5 

R
2
=0.34 (winter) tree height, basal area of 6 

deciduous trees 7 

• Gamo & Rumble SMLR  8 

2000   R
2
= 0.39 (P.ponderosa) slope, CC 9 

R
2
= 0.40 (P.tremuloides) Visible Horizon, Dbh  10 

R
2
= 0.50 (P.glauca)  CC   11 

  12 

• D ‘Eon et al. 2002 SMLR  R
2
= 0.22  

4
CC, 

5
SV 13 

• Taylor 2002  SMLR  R
2
= 0.76  SV, 

6
age, clearings 14 

• Di’Orio et al. 2003 SMLR  R
2
= 0.57  basal area 15 

 16 

• Frair et al. 2004 LR 
3
AIC ROC= 0.68  vegetation type, slope 17 

• Sager 2005  LR  !=1.0282  CC, SV, 
7
elev., CC*SV 18 

 19 

1
LR= Logistic Regression, 

2
SMLR= Stepwise Multiple Linear Regression, 20 

3
AIC= Akaike information criterion, 

4
 CC=Canopy Cover, 

5
SV=Sky Visibility, 

6
age=Forest 21 

age & 
7
elev.= elevation 22 

 23 

24 
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 1 

Table 3:  Discrete categorization of vegetative predictor variables for both the western (wcw) 2 

and eastern (ecw) cascades of Washington GPS PAR data with variables included in final 3 

models.  Bold face type of the region indicates selected variables in final model. 4 

 5 

1. Percent Total Vegetation Cover (TVC);  6 

! wcw & ecw:  0-60% , 60-90% & 90-100%  7 

2. Percent Conifer Cover (CC);  8 

! wcw & ecw:  0-40%, 40-80% & 80-100%    9 

3. Percent Broadleaf Cover (BC);  10 

! wcw & ecw:  0%, 0-10%, 10-20% & 20-100%, 11 

4. Quadratic Mean Diameter of overstory trees (QMD); 12 

! wcw: 0, 0-25.4 cm, 25.4-50.8 cm & >50.8 cm 13 

! ecw:  0-12.4 cm & >12.4 cm 14 

 15 

16 
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Table 4.  Stratification variable organization and definition used in field sampling efforts of  1 

GPS PAR across the entire Cascades of Washington based on the IVMP data sets. 2 

1.   Forest type  3 

! Open:  TVC <30%     4 

! Semi-open: 30% > TVC < 70%    5 

! Conifer: TVC > 70%; CC >= 70%   6 

! Mixed:  TVC > 70%; CC and BC < 70%   7 

2.  QMD  8 

 Western Cascades    9 

! 0-30 cm         10 

! 31-60 cm       11 

! 61-190cm  12 

Eastern Cascades 13 

! 0-25cm 14 

! 25-190cm 15 

3.  Slope and aspect  16 

! slope < 20 degrees    17 

! north-facing slopes > 20 degrees   18 

! south-facing slopes > 20 degrees      19 

4.  Sky visibility 20 

! 0-60%  21 

! 60-70%  22 

! 70- 80%  23 

! 80-100%  24 

 25 

26 
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Table 5.  Definition of predictor variables and nomenclature thereof for a single cell  1 

and a nine cell sampling window used to build models for testing GPS PAR. 2 

Type  Sampling Window Variable    Nomenclature 3 

Topographic  1&9  Cosine of radial aspect   ASP 4 

1&9  Slope (degrees); mean   SLP 5 

9  Slope; standard deviation   SLPSD 6 

1&9  Elevation (m); mean    ELEV 7 

9  Elevation; standard deviation  ELEVSD 8 

   1&9  Sky visibility; mean   SV 9 

   9  Sky visibility; standard deviation  10 

Vegetative  1&9  Mode of QMD
1   

QMD 11 

9  Number of QMD classes   12 

   1&9  Mode of BC
2    

BC 13 

9  Number of BC classes    14 

1&9  Mode of CC
3
    CC 15 

9  Number of CC classes    16 

1&9  Mode of TVC
4
   TVC 17 

9  Number of TVC classes   18 

QMD
1
=Quadratic mean diameter, BC

2
= Broadleaf cover, CC

3
= Conifer cover & 19 

TVC
4
=Total vegetation cove20 
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Table 6.  Results from model testing of Cascade GPS PAR based on a one and nine cell extraction window for the western and eastern 1 

Cascades of Washington State, USA shown with negative log likelihood (-LL), number of parameters (K), Akaike’s information 2 

criteria (AICc), criterion difference (!i) and weights (wi).  3 

 4 

Region Window Rank Model    -LL  K AICc  !i wi  5 

West  1  1 ASP& CC    5184.2  4 10378.5 0 0.81 6 

    2 CC     5186.9  3 10381.8 3.3 0.16 7 

    3 ASP, SLP, ELEV & TVC 5185.7  6 10385.3 6.8 0.03 8 

West  9  1      ASP, SLP, ELEV, SV & TVC 6980.5  7 13972.5 0 0.40 9 

    2 TVC    6983.2  4 13973.1 0.6 0.30 10 

    3 ASP & TVC   6980.5  5 13973.1 0.6 0.30 11 

East  1  1 ASP, TVC   2396.6  4 4803.2  0 0.63 12 

    2 ASP, SLP, ELEV & TVC 2395.2  6 4804.4  1.2 0.35 13 

    3 ASP, CC & QMD  2400.2  4 4810.4  7.2 0.02 14 

East  9  1 ASP & TVC   2396.5  4 4803.0  0 0.46 15 

    2      ASP, SLP, SLPSD, ELEVSD 2394.2  6 4803.3  0.3 0.40 16 

    3 ASP, TVC, QMD & CC 2396.6  4 4805.3  2.3 0.14 17 
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Table 7. The most parsimonious selected model for the western cascades of Washington GPS 1 

position acquisition rate's parameters, coefficients (!) robust error estimates and confidence 2 

intervals at 323 (n =15,550; m =317). 3 

           4 

Variable  !  Std. Err.  z P>|z|  [95%] 5 

ASP 0.2568 0.1235 2.08 0.0376 0.0147 0.4989 6 

CCdv2 -1.0156 0.3013 -3.37 0.0007 -1.6061 -0.4251 7 

CCdv3 -1.7966 0.2799 -6.42 <0.0001 -2.3451 -1.2480 8 

Intercept 2.6484 0.2584 10.25 <0.0001 2.1420 3.1549 9 

 10 

 11 

Table 8.  The most parsimonious model for the eastern cascades of Washington GPS position 12 

acquisition rate's parameters, coefficients (!) robust error and confidence intervals (n = 13 

11,057; m = 219) based on a one cell extraction window (25 m) with an auto-regressive GEE 14 

(m=1) modeling correlation structure. 15 

  16 

Variable  !  Std. Err.  z P>|z|  [95%] 17 

ASP 0.4291  0.1685 2.55 0.0109 0.0989 0.7594 18 

TVCdv2 -0.9634 0.3119 -3.09 0.0020 -1.5747 -0.3521 19 

TVCdv3 -1.6989 0.2900 -5.86 <0.0001 -2.2673 -1.1306 20 

Intercept 3.5887 0.2637 13.61 <0.0001 3.0719 4.105521 
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Figures  

 

Fig. 1.  Map showing predicted GPS Position Acquisition Rate (PAR) for the Cascades of 1 

Washington State used to offset bias generated during habitat analysis of GPS data from 2 

collared mountain goats.  This combines the two study areas, east and west of the pacific 3 

crest, into a single unified data layer. 4 



 27 

 1 

Fig. 2:  Relative GPS PAR between a Trimble GeoExplorer3 and Vectronic-Aerospace  2 

wildlife telemetry collar at 138 sites across the Washington cascades shown with a one to 3 

one fit line.   4 

 5 

Fig. 3:  Correlation of GPS PAR between two Vectronic-Aerospace GPS  6 

wildlife collars place within 1 m of each other at 16 different sites in the north cascades 7 

shown with a one to one fit line. 8 
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 1 

Fig. 4:  A comparison of observed GPS PAR and predicted GPS PAR for the western  2 

cascades of Washington  (wcw) based on a one cell extraction window using all fixes. 3 

 4 

Fig. 5  A comparison of observed GPS PAR and predicted GPS PAR for the  5 

eastern cascades of Washington (ecw) based on a one cell extraction window. 6 

 7 
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 1 

Fig. 6.  Seasonal comparison of GPS PAR from collared goats in the northern region of  2 

the western cascades based on 10,000 locations obtained between July 15 to August 31 of 3 

2004 and 2005 (black) and December 15 to January 31 during the winters of 2003-04 and 4 

2004-05 (white).     5 
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Chapter Two: 1 

 2 

 3 

HABITAT SELECTION BY MOUNTAIN GOATS OREAMNOS 4 

AMERICANUS IN THE WASHINGTON CASCADE 5 

6 
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Introduction 1 

Mountain goats inhabit some the most rugged terrestrial environments of the North 2 

American west (Côté and Festa-Bianchet 2003).  The harsh environment that they inhabit 3 

results in low fecundity, low survivorship and poorly understood population dynamics 4 

(Adams and Bailey 1982).  Their selection of cliffs evolutionarily decreased their 5 

predation pressure, but use of these sites carries with it an increased risk of death or 6 

injury due to falls and rock slides (Johnson 1983).  Characteristically rugged, this species 7 

has shown in the past the ability to rapidly colonize new territory (Hayden 1984) and 8 

quickly disappear in others (Kuch 1977).       9 

Native mountain goat populations of the Washington Cascades have decreased over 10 

the last several decades (Côté & Festa-Bianchet 2003).  Some rough estimates suggested 11 

declines as much as 70% over the last forty years (Rice pers. comm.).  In some locales 12 

that once had dozens of goats, for instance the wintering grounds at Penders Canyon, 13 

recent surveys have found few small bands or no goats at all.  This decline has resulted in 14 

a major reduction of the permitted hunt.  Concern over the population decline also 15 

prompted studies investigating the reasons behind this trend.  Possible explanations for 16 

the population decline include: over hunting, increased recreational disturbances, 17 

increased cougar Felis concolor populations, disease, population fragmentation, loss of 18 

genetic viability, habitat loss, climate change and the combination of multiple stressors.   19 

Most previous work on mountain goat habitat has focused on summer months.  20 

Severe weather and logistical issues has made it problematic to address seasonal variation 21 

in habitat use in any systematic fashion.  Understanding total year round available habitat 22 

can assist land-use managers and applied conservation strategies designed to assist in 23 

mountain goat recovery.  To augment the existing, largely summer, anecdotal accounts of 24 

mountain goat habitat (Gross et al. 2002), I have developed a year round GIS habitat 25 

model based on an elevation profile of GPS collared mountain goats. The objective of 26 

this was to improve the accuracy and precision of previous modeling efforts (Johnson & 27 

Cassidy 1997), incorporate a GPS bias correction model and to designate the largely 28 

unknown (Côté and Festa-Bianchet 2003) lower elevation habitats; areas of critical 29 

importance to over wintering success.  It is these lower reaches of habitat that often fall 30 

within range of and were most susceptible to direct disturbance from anthropogenic 31 
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sources.  Individual accounts of past human activities suggested that such disturbances 1 

have lead to extirpation of local populations through destruction of over wintering sites.   2 

This research contributed to establishment of an ecological base line by which future 3 

investigations of mountain goat ecology and population trends may measure. 4 

 In this chapter, I developed a series of statistical models to identify potential 5 

mountain goat habitat on the western side of the Cascade Mountain Range in Washington 6 

State.  These habitat models are based on location data collected over a two-year period 7 

from 39 GPS collared animals.  These habitat models incorporate the GPS bias correction 8 

effort described in Chapter One.  The resulting maps provide insights on the status of 9 

potential mountain goat habitat and will contribute to more effective management and 10 

possible recovery of the species in Washington State. 11 

.   12 

Materials and Methods 13 

Capture and Collars 14 

WDFW captured and administered care and supervision of study animals in 15 

accordance with American Society of Mammalogists' guidelines.  Mountain goats were 16 

captured via aerial and ground-based darting with 0.4-0.5 cc Carfentanil or 50-70 mg 17 

xylazine hydrochloride mixed with 0.15-0.25 mg of opiate A3080 and reversed with 3.0 18 

cc Naltrexone or 4.0 cc Tolazine, respectively.  The 39 captured individuals were 19 

outfitted with GPS telemetry collars (GPS plus collar v6, Vectronic-Aerospace GmbH, 20 

Berlin, Germany) scheduled to record a fix every 3 hours for a period of 2 years.  21 

Initially, nine of the captured animals' collars recorded fixes on a 5-hour interval 22 

accounting for 10% of the data used in this analysis.   Most of these five-hour intervals 23 

were reprogrammed within 6 months.  Three animals were recaptured and re-collared 24 

after hardware failure.  Seven collars failed and animals were not re-collard prior to two 25 

full years worth of data collection.  Six study animal mortalities occurred during the 2-26 

year period, mostly from unknown causes.  Use of data from multiple years was intended 27 

to reduce the impact of inter-annual habitat selection due to weather.  The winter of 2004-28 

05 had very low snow pack throughout most of the Cascades and the winter of 2005-06 29 

had snow packs that were slightly higher than the long-term average (USDA 2006) 30 
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Data Analysis  1 

I created eight-habitat selection models based on elevation ranges employing the 2 

use-availability design type II sampling protocol SP-A (Manly et al. 2002, Keating & 3 

Cherry 2004).  I used weighted logistic regression with Akaike's Information Criteria 4 

(AIC) to select each of the most parsimonious model based on a subset of models.  I 5 

modeled the probability of a mountain goat location (!) as:   6 

exp(ß0 + ß1 X1 + ß2 X3 +…+ ßp Xp) 7 

!    =           eqn. 3  8 

1+exp(ß0 + ß1 X1 + ß2 X3 +…+ ßp Xp) 9 

 10 

The weighting factor accounted for GPS data loss due to topographic and vegetation 11 

obstructions of satellite signals using the inverse of the GPSPAR developed from Chapter 12 

One.  I also generated parameter estimates for the selected models without the weighting 13 

factor to gauge the influence of the bias correction factor.   I calculated cut points based 14 

on the predicted probability at the convergence of the cumulative number of goats points 15 

versus the cumulative number of available points and developed classification accuracies 16 

from these.  17 

Assumptions: 18 

The use-availability design protocols also presumed a number of assumptions 19 

regarding the study design that used measurable attributes of resource use.  The stated 20 

assumption, "animals have free and equal access to all available locations" (Manly et al. 21 

2002) required consideration and ultimately violating.  Mountain goats inhabiting 22 

relatively small ranges with few, if any, long range dispersals could not have equal access 23 

to all locations in the entire Cascades mountain range.  To model such a situation, I had to 24 

generate available locations based upon some reasonable limitation of each individual 25 

animals theoretical movements.  This however, precluded modeling the entire study area 26 

as a whole range for the species.  I therefore compromised, and split the available sites 27 

into northern and southern regions divided along the Interstate 90 corridor.  This split the 28 

data set into 8 subsets, based on the four elevation bands in the north and south, which I 29 

modeled individually.  Delineation of elevation quartiles was made prior to the division 30 

of habitat into two regions.  I clustered an equal number of random points to mountain 31 
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goat points based on this north south division.  In other words, regarding the stated 1 

assumption about free and equal access, mountain goats in the northern half of the study 2 

area have access to all points north of I-90 and likewise for the south.  This certainly 3 

remained a violation of the assumption and ecological reality but reduced computational 4 

loads and the number of data sets required to model a species wide assessment of 5 

potential habitat.   6 

The repeated measure of individual animals also violated the assumption of 7 

independence of observations.  I attempted to model the correlation structure of the intra-8 

cluster structure of GPS waypoints of collared animals to account for this.  I wanted to 9 

use a non-linear mixed model during model selection to account for this clustering of 10 

observations by clustering the individual animal as a random effect.  Each cluster of 11 

individual animal locations was paired with an equal number of available sites in the 12 

cluster.  After selecting the most parsimonious model I then wanted to use the PROC 13 

GEN MOD command in SAS to model the correlation structure of the waypoints with a 14 

generalized estimating equation (GEE) and generate robust standard errors and modified 15 

parameter estimates.  The amount of random effects variability in the datasets however, 16 

failed to achieve quadrate accuracy during model selection and failed to estimate variance 17 

with a GEE with either auto-regressive or exchangeable correlation structure.  I therefore 18 

retained the initial parameter estimates generated with ordinary logistic regression for 19 

habitat modeling while recognizing the inherent flaws with the standard error estimates.              20 

GIS habitat predictor variables 21 

A series of predictor variables were developed to describe the vegetation and 22 

topographic characteristics of the study area.  For each goat location, I extracted GIS data 23 

at one spatial scale for inclusion in the habitat analysis, 625 m
2
 (75 m x 75 m square 24 

extraction window).  I opted to use a 625 m
2
 extraction window recognizing that over the 25 

three hour GPS sampling interval, mountain goats likely selected habitats at a scale much 26 

larger than the finest resolution of available satellite imagery, 25 m.  This scale also 27 

encompassed more of the GPS inaccuracies. 28 

As described in Chapter One, I used the IVMP  (O'neil et al. 2002) data layers to 29 

create independent vegetation variables.  I created six classes of total vegetative cover:  0-30 

20%, 20-40%, 40-60%, 60-80%, 80-100% total cover and areas classified as rock and ice.  31 
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I broke the QMD data layers into four classes:  No cover, 0-30cm, 31-60cm and 61-1 

190cm.  The CC layer I classified into three discrete categories: 0-30%, 30-70% and 71-2 

100%.  I did not select even intervals for the CC due to prior definitions of areas with no 3 

cover in the QMD layer as specified by the IVMP.  The IVMP considers areas with less 4 

than 30% CC as areas with a QMD of 0.  This way the lowest definition of CC remained 5 

consistent with the QMD layer.  I did not include any variables representing broadleaf 6 

coverage in the analysis.  The final vegetation variables used for model creation included 7 

the mode and variety of pixels classified by TVC, QMD and CC for each square 8 

extraction window.  I treated the vegetation variables as categorical represented by 9 

implied dummy variables.   10 

I derived topographic predictor variables from a 10 m DEM masked to the same 11 

spatial extent and resampled to the same pixel size as the western cascades of 12 

Washington IVMP data set (25 m).  I created slope and aspect layers with Spatial Analyst 13 

(ESRI 2004) using the surface tool set.  In the analysis, I used slope as a continuous data 14 

directly exported from the GIS.  Considering the circular nature of aspect and the possible 15 

importance of this as a factor in mountain goat habitat selection, I opted to transform 16 

aspect into two distinct continuous covariates (Gross et. al. 2002).  I used the cosine and 17 

sine of aspect, in radians, to model whether or not mountain goats show selective use of 18 

slopes from north to south and east to west.   19 

The distance to escape terrain data layer involved a few additional calculations.  I 20 

defined escape terrain as areas with slopes greater than 35° based on an average of 21 

previously reported values (Fox and Taber 1981; Johnson 1983; Varley 1994; Fox 1989; 22 

Gross et al. 2002).  I used a slope layer created at the 10 m resolution to and reclassified 23 

areas with slopes greater than 35° as escape terrain or not.  I made this distinction prior to 24 

reclassifying the pixels to the 25 m cell size in order to retain the finest possible 25 

resolution for defining distance to escape terrain.  The 10 m pixel size is simply too 26 

computationally intensive to used for the entire model, despite having a greater precision.  27 

I then used the Euclidean distance tool to calculate the distance from the center of each 28 

pixel in the raster file to the nearest pixel of escape terrain.  The final topographic 29 

predictor variables available for model building came from a 3 x 3 pixel extraction 30 
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window and included mean degree slope, standard deviation of slope, elevation (m), sine 1 

and cosine of aspect and distance to escape terrain (m). 2 

  3 

Results 4 

Initially, I wanted to define seasonal habitats used by mountain goats in the sense of a 5 

calendar driven definition of seasons.  In other words, during the winter goats inhabited a 6 

particular regions and during the summer and another region during the winter.  7 

Describing habitat in this framework however, failed for a number of reasons.  Some 8 

animals changed elevation frequently, others much less.  Some animals went high on the 9 

slopes of volcanoes while others did, or could not, given the geomorphic setting that they 10 

occupied.  Comparing animals revealed that many may have moved lower at the same 11 

time in the fall, but using any sort of average date, showed an earlier change for those that 12 

started higher (Fig. 7).  Apparently, some individuals had access to low elevation habitats 13 

and others simply did not.  14 

In addition, the whole phenomenon likely hinged on weather patterns, and only 15 

worked in a broad sense because of the relationship between season and weather.  The 16 

variability of weather within a season and between years created part of the problem.  17 

Natural history of the mountain goat suggested that animals respond to weather in their 18 

use of different seasonal habitats.  So, if an animal moved to high ground in March 19 

because of "good weather" and back down in April during "bad weather", how does fit 20 

into the notion of calendar driven seasons?  Did the goat use summer habitat in March 21 

and winter habitat in April?  Or does the "winter" habitat include the March locations?  If 22 

the animal went to "summer" habitat during the mild spell, then returned to "winter" 23 

habitat with the return of poor weather then partitioning seasons by date defied efficient 24 

data management, analysis and ecological relevant partitioning of habitat ranges. 25 

Instead, I looked at the habitat usage by elevation.  In this way, the habitat modeling 26 

predicted that when a mountain and goat was at any give elevation its selection of 27 

habitats was based on these different characteristics.  When a goat responded to a weather 28 

driven phenomenon and moved to a different elevation band, the modeling scheme 29 

accounted for these intra-seasonal (in a calendar defined) changes in habitat use.  The 30 

final modeling scheme then predicted four ranges of habitat use based on elevation.        31 



 37 

The use-availability experimental design in habitat selection modeling called for a set 1 

of random or available points.  I used Hawth's analysis tools (Beyer 2004) to generate 2 

random points in accordance with the elevation quartiles of GIS mountain goats 3 

locations.  I bound the lower limit of the first quartile of random points with a 4 

conservative estimate of 300 m based on the lowest extracted GIS elevation of a 5 

successful GPS fix from a mountain goat (322 m).  I defined the upper limit of the 4
th
 6 

quartile random points at 3100 m and maintained a 1:1 ratio of individual goat locations 7 

to random points in each quartile. 8 

 I acquired 86,826 GPS locations from the 39 collared mountain goats.  The elevation 9 

distribution of these points based on GIS elevations rather then the recorded GPS 10 

elevations followed a Gaussian curve (Fig. 8).   The eight data subsets had a range of total 11 

number of waypoints from 3843 in the lowest elevation band in the southern Cascades to 12 

17,751 waypoints in the northern cascades lowest elevation quartile.  The 4 northern 13 

cascades elevation bands constituted 51,881 waypoints while the 4 southern subsets 14 

tallied 34,945 waypoints.  In the northern region, each quartile contained locations from 15 

21 animals, while the southern region had 11 animals in the 1st quartile, 15 in the 2
nd

 and 16 

16 in both the 3rd and 4th quartile.   17 

From these GIS extracted elevations I determined the 1
st
 quartile at 1187 m, the 18 

median at 1455 m and the 3
rd

 quartile at 1670 m.  The upper elevation of the 4
th
 quartile 19 

was bounded at 3100 m above which no mountain goat locations were recorded.  The 20 

distribution of goat locations by month within these quartiles follows expected trends of 21 

seasonal goat movement (Fig. 9).   22 

The most parsimonious models for the eight datasets based on weighted goat  23 

locations followed similar patterns of variable inclusion.  The global model along with 24 

two similar models, one excluding the first class of QMD and the other the variety of 25 

QMD classes in the extraction window, constituted the highest ranked subset of models 26 

according to the AIC scores (Table 9.0) for all the datasets.  The selected models were 27 

not the same for the 1st and 4th elevation quartiles across the two regions.  The 3rd and 28 

2nd quartiles had the same model parameters in both regions.  All of the models included 29 

the topographic variables distance to escape terrain, both measures of aspect, elevation, 30 

slope and standard deviation of slope.  The vegetation variables included in the models 31 
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varied slightly but all included each category of variable QMD, conifer cover and total 1 

vegetation cover (Table 9.1-9.8).  Empirical cumulative frequency distributions of 2 

topographic predictor variables showed selection by goats for distance to escape terrain 3 

and slope (Fig. 10).       4 

The cut points between the number of available sites and mountain goat sites were 5 

lower for the un-weighted habitat map (Table 10).  Classification accuracies based on 6 

these cut points showed the weighted maps had a slightly better ability to differentiate 7 

mountain goat habitat from non-habitat in four of the eight datasets and virtually equal 8 

classifications in the remaining four.  Area under the receiver operating curve for each of 9 

the eight weighted models exceeded 0.70 (Table 10) based upon independent data. 10 

The final habitat map displays the continuous probability of potential mountain goat 11 

habitat taking into account the GPS bias correction factor across the Western Cascades 12 

Province (Fig. 11).  Taking the average cut point for all quartiles from the weighted ( x  = 13 

0.596) and un-weighted map ( x  = 0.575) and reclassifying all probabilities as habitat or 14 

not indicated a total of 253,638 ha and 249,715 ha of total available mountain goat terrain 15 

respectively.  This amounted to 9.2% and 9.0% of the total study area.   16 

Discussion 17 

 The final habitat maps shows in one data layer, the predicted probability of the 18 

landscape being mountain goat habitat or not taking into account a small GPS bias 19 

correction factor developed in Chapter one.  The differentiation of available sites from 20 

north to south across the mountain range as well as the four elevation quartiles used to 21 

model habitat created eight distinct models and habitat mapping regions.  These eight 22 

were mosaiced into one final map interpreted as probability of habitat selection based on 23 

elevation use.  Thus at any given landscape, elevation the probability of the site being 24 

mountain goat terrain may be inferred.  Using the optimal cut points yields the best 25 

classification accuracy of the landscape being habitat or not, but adjusting these points 26 

based on management objectives will alter the maps towards either a more or less 27 

conservative estimate of mountain goat habitat.     28 

 The final map was consistent with population distribution patterns of mountain goats 29 

throughout large portions of the western Cascades.  The regions circumnavigating around 30 

Mt. Baker (Fig. 12) showed high potential habitat in areas known to contain 300-400 31 
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mountain goats.  The Three Fingers-Whitehorse mountain chain also clearly included 1 

substantial amount of habitat (Fig. 13).  The mountain goat habitat in this region appears 2 

to lack connectivity to other nearby habitat although there does appear to be some 3 

connectivity to the southeast.  Even in this direction there is a major drainage system that 4 

separates the Three Fingers-Whitehorse habitat complex from the Glacier Peak habitat 5 

complex to the east.  Mount Rainier (Fig. 14) also has lots of habitat along its slopes with 6 

a distinctly more sinuous structure.  The habitat patches appeared longer and more 7 

narrow than those around Mt. Baker and not as well connected.  This most likely 8 

stemmed from the fact Mt. Rainer stands much larger then Mt. Baker and consequently 9 

has habitat patches spread out across greater distances and much further away from one 10 

another.  This area currently supports a large population of mountain goats.  11 

 The data layer also displayed some high probabilities of potential mountain goat 12 

habitat in areas with few or no populations.  In particular, the areas east of Mt. Baker 13 

towards the North Cascades National Park and the Pickett Range have some of the 14 

darkest and most obvious patches of habitat (Fig. 15).  This region however, does not 15 

support a strong population of mountain goats.   The central Cascades also have quite a 16 

bit of habitat but currently do not support strong populations of mountain goats possibly 17 

to large harvest in the past (Fig. 16).  The southern Cascades, from Goat Rocks 18 

Wilderness Area to Mt. Adams and Mt. St. Helens (Fig. 17), show more disjointed and 19 

not nearly as much high quality habitat as the Northern Cascades although they do 20 

support mountain goat populations.       21 

The trends in elevation use follow expected ecological patterns.  There was high use 22 

of the fourth elevation quartile during July, June and August after a quick transition up 23 

from the peak usage in lower quartiles.  Downward movements progressed more slowly 24 

in the end of the summer and fall months.  The lowest quartile had the highest usage 25 

during the first three and last two months of the year.  This fit with expected patterns of 26 

elevation changes across seasons and supported partitioning the data and modeling 27 

habitat by elevation quartiles to capture seasonal trends.     28 

Weighting each of the goat location on the basis of GPS PAR did not appear to have 29 

much effect on the habitat models. The slightly lower cut points developed with models 30 

not using the weighting factor to offset GPS PAR resulted in slightly lower classification 31 
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accuracies across four of the eight datasets.  The difference in cut points and accuracies 1 

however, was virtually negligible in these four models.  The total area of potential habitat 2 

delineated by each set of models was similar.  The greater total area of habitat based on 3 

the weighted model's mean cut points suggested the bias correction factor accounted for 4 

some habitat's where detection of study animals may have been low.  5 

The small difference between the weighted and un-weighted models may result from 6 

at least two different factors.  First, the predictive power of the GPS bias correction 7 

model from Chapter One was comparable to that reported in other studies (Rempel et al. 8 

1995; Deckert & Bolstad 1996; Edenius 1997; Dussault et al. 1999; Gamo & Rumble 9 

2000; Licoppe 2001; Rodgers 2001; D’Eon et al. 2002; Taylor 2002; Di Orio et al. 2003; 10 

Frair et al. 2004; Cain et al. 2005; Sager 2005) but it was still relatively low.  Second, the 11 

effect of bias in GPS PAR may have been minimized because I developed separate 12 

habitat models for each elevation band.  Had I developed a single model using location 13 

data from all elevation bands, the effect of bias in GPS PAR may have resulted in a larger 14 

difference between weighted and un-weighted habitat models.   15 

 16 

In both the north and south, the classification accuracy and area under the receiver-17 

operating curve improved in lower elevation quartiles.  This was a counterintuitive result.  18 

I expected the higher elevation habitats to be clearly delineated while the lower elevation 19 

habitats would be more difficult to define.  This may be a consequence of the lower 20 

elevation quartiles classifying more terrain as habitat even thought they do not have good 21 

access to high elevation habitats while the areas actually used by mountain goats at low 22 

elevations may be quite limited.  The higher elevation habitats may have lower 23 

classification accuracies due to the availability of much more moderate habitat not 24 

necessarily used when goats at high elevations may be selecting the most precipitous 25 

terrain.  There also may have been more contaminated controls (Keating & Cherry 2004) 26 

at the higher elevations then at the lower elevation bands.             27 

The habitat models showed similar patterns of variable inclusion across all eight 28 

datasets.  In each model, all the topographic predictor variables were retained as well as 29 

some measure of all the three types of vegetation predictor variables.  The most 30 

parsimonious models were the global model or the global model with the exclusion of 31 
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one variable.  These models excluded the first QMD class or the variety of QMD classes 1 

found in the 9 x 9 pixel square extraction window.   2 

 Examining the results from north to south, the variable representing areas of rock and 3 

ice (Table 9.1-9.8 tvc6) shows a strong difference between these regions.  In the southern 4 

models all the parameter estimates have negative values while the northern regions all 5 

show positive estimates.  Distance to escape terrain also had negative parameter estimates 6 

in all but one data set, the first quartile of the southern region.  This suggested that 7 

animals at the lowest observed elevations in this region may have shown some selection 8 

for habitats away from slopes greater then 35°.  This might reflect some long distance 9 

dispersal movements recorded in that region, varying topographic features, or simply a 10 

failure of the model to capture the random effects error structure with properly robust 11 

confidence intervals.   12 

The violation of certain assumptions regarding the habitat modeling process and 13 

choices therein has created some unavoidable error in modeling methodology.  The lack 14 

of enough variation, or small random effects size resulted in the choice of ordinary 15 

logistic regression that failed to account for the lack of independence between data points 16 

acquired from a single study animal.  The use of the PROC GLIMMIX command in SAS 17 

may provide the ability to correctly account for these random effects and lack of 18 

independence in future modeling efforts.  The largest discrepancy between a model 19 

accounting for random effects was in the standard error and resulting confidence 20 

intervals.  The final habitat models (Table 9.1-9.8) have much too narrow confidence 21 

because of the failure to model such small random effects.  Parameter estimates may have 22 

varied slightly as well as some Chi-squared test statistics.   23 

 The final habitat maps generated in this analysis lay the groundwork for a more 24 

detailed assessment of available mountain goat habitat in the western Cascades.  Future 25 

work should look at the spatial orientation and connectivity of habitat patches.  26 

Identifying the largest patches of contiguous habitat would help in the success of a 27 

relocation effort and establishment of viable populations with suitable access to terrain 28 

and other animals.   29 

 To get a full picture of the habitat available to the entire Cascade population of 30 

mountain goats the eastern Cascades of Washington also need a similar habitat model.  31 
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Based on the relatively small influence of the weighting factor on the western cascades 1 

where I expected much lower GPS PAR, I would seriously consider the merits of 2 

incorporating the weighting factor in the eastern habitat models.  I expect much higher 3 

rates of GPS PAR on the east side and consequently less data loss from collared wildlife.  4 

A more prudent option to account for GPS bias might be to develop some heuristic 5 

algorithms to estimate individual missed fixes based on movement parameters.  East side 6 

habitat mapping should also carefully consider the lack of independence between success 7 

fixes.  As mentioned before, the GLIMMIX procedure may handle more easily a mixed 8 

model structure.  There is no need to run an initial logistic regression and then a non-9 

linear mixed model.  The GLIMMIX command should handle everything in one step.  10 

Alternatively, considering a different statistical design may account for the lack of 11 

independence by modeling each animal individually and extrapolating results to the entire 12 

range.        13 

In my opinion, the results, the amount of fieldwork, the required methodological 14 

development and data analysis for developing the bias correction model did not provide a 15 

large return on the investment.  The weighted and un-weighted habitat maps appeared 16 

almost identical, although a more thorough analysis might provide greater insight to the 17 

degree of similarity.  Considering the applied nature of the map and ability to change cut 18 

points based on management objectives to define mountain goat habitat, the weighting 19 

factor most likely will be a mute point with even a slight shift in cut points.       20 
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Tables 1 

Table 9.0:  The models, number of parameters (K), AIC scores, delta AIC scores and AIC weights of the highest ranked models for 2 

the eight datasets used to construct the predicted potential mountain goat habitat maps for each elevation quartile (Q1,Q2,Q3 &Q4). 3 

 4 

North   Q1   Q2   Q3   Q4  

model K AIC delta weights AIC delta weights AIC delta weights AIC delta weights 

global 20 13944 0 1 18353 2 0.367879 19156 1 0.606531 13017 2 0.367879 

global w/o qmd1 19 13985 41 1.25E-09 18351 0 1 19163 8 0.018316 3029 14 0.000912 

global w/o qmd variety 19 14004 58 2.54E-13 18372 21 2.75E-05 19155 0 1 13015 0 1 

              

South   Q1   Q2   Q3   Q4  

model K AIC delta weights AIC delta weights AIC delta weights AIC delta weights 

global 20 1538 1 0.606531 5276 1 0.606531 8677 1 0.606531 21595 0 1 

global w/o qmd1 19 1537 0 1 5275 0 1 8685 9 0.011109 21620 25 3.73E-06 

global w/o qmd variety 19 1546 9 0.011109 5315 40 2.06E-09 8676 0 1 21610 15 0.000553 

 5 

 6 
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Table 9.1-9.8:  The final habitat models for the eight datasets used to model predicted 1 

potential mountain goat habitat across the western Cascades of WA, divided by elevation 2 

quartiles and a northern (Table 9.1-9.4) and southern (Table 9.5-9.8) region. 3 

 4 

NORTH: 5 

Table 9.1:  First Quartile (Lowest Elevation) 6 

                                                   Standard             Wald 95%                    Chi- 7 

 Parameter        DF    Estimate          Error           Confidence Limits            Square        Pr > ChiSq 8 

 9 

 Intercept            1       -8.8672      0.2129    -9.2846      -8.4499     1734.24   <.0001 10 

 aspcos               1     -0.9412       0.0362     -1.0121      -0.8702      675.96      <.0001 11 

 aspsin               1      -0.4560       0.0331      -0.5208      -0.3912     190.18         <.0001 12 

 elev                1       0.0033       0.0001       0.0031       0.0035      805.80        <.0001 13 

 slope                1       0.1131       0.0033       0.1067       0.1196     1179.17         <.0001 14 

 slope_stdv         1       0.1562       0.0079       0.1408       0.1717      391.41       <.0001 15 

 d2et                 1      -0.0095       0.0010      -0.0114      -0.0075       90.11         <.0001 16 

 tvc2                 1       0.1816       0.1207      -0.0550       0.4182    2.26         0.1326 17 

 tvc3                 1       0.1071       0.1085      -0.1055       0.3198            0.97        0.3235 18 

 tvc4                 1      -0.5672       0.1092      -0.7812      -0.3533       27.00         <.0001 19 

 tvc5                 1      -1.3474       0.1185      -1.5796      -1.1152      129.35      <.0001 20 

 tvc6                 1       1.3612       0.3047       0.7639      1.9585       19.95         <.0001 21 

 tvc_variety   1       0.7106      0.0307       0.6504       0.7708      535.28        <.0001 22 

 qmd1                 1      -0.6072       0.0938      -0.7910      -0.4234    41.93         <.0001 23 

 qmd2                 1      -0.2758       0.0951      -0.4623      -0.0893        8.40         0.0037 24 

 qmd3                 1      -0.5749       0.0867      -0.7448      -0.4049       43.95       <.0001 25 

 qmd_variety        1       0.2630       0.0304       0.2034       0.3226       74.77         <.0001 26 

 cc2                 1       0.5515       0.0783       0.3981       0.7049       49.66         <.0001 27 

 cc3                 1       0.5146       0.0938       0.3307       0.6985       30.08         <.0001 28 

 cc_variety        1      -0.1001       0.0398      -0.1780      -0.0222        6.34         0.0118 29 

30 
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Table 9.2:  Second Quartile 2 

                     Standard             Wald 95%                    Chi- 3 

 Parameter        DF    Estimate          Error           Confidence Limits            Square        Pr > ChiSq 4 

 5 

 Intercept 1      -0.8658       0.3472      -1.5462    -0.1853        6.22         0.0126 6 

 aspcos              1      -0.8536       0.0298      -0.9120      -0.7953      821.43         <.0001 7 

 aspsin               1      -0.3669       0.0283      -0.4224      -0.3114      167.81         <.0001 8 

 elev               1      -0.0014       0.0002      -0.0019      -0.0010       38.54         <.0001 9 

 slope               1       0.0508       0.0029      0.0451       0.0565      304.95         <.0001 10 

 slope_stdv         1       0.0764       0.0062       0.0643       0.0885      153.00         <.0001 11 

 d2et                1      -0.0170       0.0011      -0.0192      -0.0149      233.16         <.0001 12 

 tvc2             1       1.1969       0.0851       1.0302       1.3637     197.90         <.0001 13 

 tvc3                 1       0.2065       0.0774       0.0548       0.3582        7.12         0.0076 14 

 tvc4               1      -0.1514       0.0794      -0.3071       0.0042        3.64         0.0566 15 

 tvc5               1      -0.9400       0.0842      -1.1051      -0.7749      124.56         <.0001 16 

 tvc6                1       2.3258       0.1123       2.1057       2.5460      428.69         <.0001 17 

 tvc_variety   1       0.4480       0.0238       0.4014       0.4946      355.24         <.0001 18 

 qmd2              1      -0.4754       0.0618      -0.5966      -0.3543       59.14         <.0001 19 

 qmd3                1      -1.0003       0.0546      -1.1074      -0.8932      335.32        <.0001 20 

 qmd_variety      1       0.1449       0.0275       0.0910       0.1989       27.71         <.0001 21 

 cc2               1       0.2410       0.0596       0.1241       0.3579       16.33         <.0001 22 

 cc3               1       0.4502       0.0725       0.3082       0.5923       38.60         <.0001 23 

 cc_variety        1      -0.1994       0.0336     - 0.2653      -0.1335       35.21         <.0001 24 

25 
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 1 

Table 9.3:  Third Quartile 2 

                                                        Standard             Wald 95%                    Chi- 3 

 Parameter        DF    Estimate          Error           Confidence Limits            Square        Pr > ChiSq 4 

 5 

 Intercept          1       0.2077       0.4687      -0.7110       1.1264 0.20         0.6577 6 

 aspcos              1      -0.6919       0.0302      -0.7511      -0.6327      524.32         <.0001 7 

 aspsin               1      -0.3439       0.0269      -0.3966      -0.2912      163.62         <.0001 8 

 elev                 1      -0.0018       0.0003      -0.0023      -0.0012       38.54         <.0001 9 

 slope                1       0.0557       0.0026       0.0506       0.0607      463.72         <.0001 10 

 slope_stdv       1       0.0788       0.0059       0.0673       0.0902      181.26         <.0001 11 

 d2et                1      -0.0033       0.0008      -0.0048      -0.0018       19.40         <.0001 12 

 tvc2             1       0.7059       0.0631       0.5822       0.8296      125.08         <.0001 13 

 tvc3               1       0.3897       0.0620       0.2682      0.5113       39.49         <.0001 14 

 tvc4               1      -0.0473       0.0695      -0.1835       0.0888        0.46         0.4956 15 

 tvc5                1      -0.5504       0.0824      -0.7119      -0.3889       44.60         <.0001 16 

 tvc6              1       0.9908       0.0721       0.8494       1.1322      188.71         <.0001 17 

 tvc_variety   1       0.1255       0.0217       0.0829       0.1680       33.44         <.0001 18 

 qmd1              1      -0.1845       0.0778      -0.3370      -0.0320        5.62         0.0178 19 

 qmd2               1      -1.1555       0.1006      -1.3526      -0.9584      132.03         <.0001 20 

 qmd3                1      -1.1734       0.0833      -1.3366      -1.0103      198.65         <.0001 21 

 cc2                1      -0.1561       0.0536      -0.2611      -0.0511        8.49         0.0036 22 

 cc3               1      -0.0794       0.0710      -0.2185       0.0596        1.25         0.2629 23 

 cc_variety         1      -0.0452       0.0325      -0.1089       0.0184        1.94         0.1638 24 

25 
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Table 9.4:  Fourth Quartile (Highest Elevation) 1 

                                                        Standard             Wald 95%                    Chi- 2 

 Parameter        DF    Estimate          Error           Confidence Limits            Square        Pr > ChiSq                                     3 

    4 

 Intercept          1       7.2777       0.3223       6.6460       7.9095      509.83         <.0001 5 

 aspcos             1      -0.9675       0.0398      -1.0454      -0.8895      592.00        <.0001 6 

 aspsin               1      -0.2833       0.0326      -0.3471      -0.2195       75.72         <.0001 7 

 elev               1      -0.0045       0.0002      -0.0048      -0.0042      840.12         <.0001 8 

 slope              1      0.0053       0.0030      -0.0005       0.0111        3.16         0.0756 9 

 slope_stdv         1       0.0456       0.0068       0.0322       0.0590       44.44         <.0001 10 

 d2et               1      -0.0086       0.0009      -0.0103      -0.0068       89.05         <.0001 11 

 tvc2                1       0.7568       0.0675       0.6246       0.8890      125.86         <.0001 12 

 tvc3                1       0.6767       0.0729       0.5339       0.8195       86.23         <.0001 13 

 tvc4                1       0.0058       0.0958      -0.1818       0.1935        0.00         0.9513 14 

 tvc5               1      -0.8941       0.1524      -1.1928      -0.5953       34.40         <.0001 15 

 tvc6                1       0.7940       0.0646       0.6673       0.9207      150.84         <.0001 16 

 tvc_variety   1      -0.0376       0.0276      -0.0917       0.0165        1.85         0.1736 17 

 qmd1              1      -0.5551       0.1480      -0.8452      -0.2650       14.06         0.0002 18 

 qmd2                1      -2.1120       0.2978      -2.6957      -1.5283       50.29         <.0001 19 

 qmd3              1      -1.8249       0.2121      -2.2406      -1.4091       74.02         <.0001 20 

 cc2              1       0.1039       0.0698      -0.0329       0.2407        2.21         0.1368 21 

 cc3                1       0.4817       0.1019       0.2820       0.6814       22.34         <.0001 22 

 cc_variety         1       0.0697       0.0424      -0.0133       0.1527        2.71         0.1000 23 

24 
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SOUTH: 1 

Table 9.5:  First Quartile (Lowest Elevation) 2 

                                                        Standard             Wald 95%                    Chi- 3 

 Parameter        DF    Estimate          Error           Confidence Limits            Square         Pr >ChiSq                                      4 

  5 

Intercept           1     -18.5027       0.7409     -19.9548     -17.0506      623.69 <.0001            6 

 aspcos              1     -0.4339      0.1154      -0.6602      -0.2076       14.13         0.0002 7 

 aspsin               1     -0.1748       0.0957      -0.3624       0.0127        3.34         0.0677 8 

 elev                 1      0.0074       0.0005       0.0065       0.0083      258.35         <.0001 9 

 slope                1      0.2501       0.0099       0.2307       0.2696      637.84         <.0001 10 

 slope_stdv          1      0.0805       0.0242       0.0331       0.1280      11.05         0.0009 11 

 d2et                 1      0.0009       0.0008      -0.0006       0.0024        1.41         0.2350 12 

 ric2                 1      0.6018       0.4664      -0.3122       1.5159        1.67         0.1969 13 

 ric3                 1      0.2663       0.3925      -0.5030       1.0356        0.46         0.4975 14 

 ric4                 1     -0.2836       0.3583      -0.9859       0.4187        0.63         0.4287 15 

 ric5                 1      0.1078       0.3636      -0.6048       0.8205        0.09         0.7668 16 

 ric6                 1    -21.7808     34232.09     -67115.4     67071.88        0.00         0.9995 17 

 rockice_variety   1      0.3230       0.1030       0.1211       0.5250        9.83         0.0017 18 

 qmd2                 1     -0.2244       0.2012      -0.6187       0.1699        1.24         0.2647 19 

 qmd3                 1     -0.0861       0.2052      -0.4883       0.3162        0.18        0.6750 20 

 qmd_variety      1      0.3518       0.1011       0.1536       0.5499       12.11         0.0005 21 

 con2                 1      0.0431       0.2628      -0.4720       0.5582        0.03         0.8697 22 

con3                 1      0.5695      0.3219      -0.0614       1.2004        3.13         0.0769 23 

 con_variety        1      0.4532       0.1300       0.1985       0.7079        12.16         0.000524 
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Table 9.6:  Second Quartile 1 

                                                         Standard             Wald 95%                    Chi- 2 

 Parameter        DF    Estimate          Error           Confidence Limits            Square        Pr > ChiSq                                                                           3 

 4 

 Intercept            1     -16.4693       0.6912     -17.8241     -15.1145      567.68         <.0001 5 

 aspcos               1      -0.1952       0.0601      -0.3131      -0.0773       10.53         0.0012 6 

 aspsin            1      -0.2791       0.0499      -0.3770      -0.1812       31.22         <.0001 7 

 elev                 1       0.0053       0.0005       0.0044       0.0062     136.78         <.0001 8 

 slope             1       0.2412       0.0063       0.2288       0.2537     1449.08         <.0001 9 

 slope_stdv           1       0.1095       0.0115       0.0870       0.1319       91.20         <.0001 10 

 d2et               1      -0.0014       0.0011      -0.0036       0.0008        1.67         0.1967 11 

 tvc2              1       0.0250       0.2084      -0.3834       0.4335        0.01         0.9044 12 

 tvc3              1      -0.4009       0.1729      -0.7398      -0.0620       5.38         0.0204 13 

 tvc4              1      -0.9617       0.1824      -1.3192      -0.6042       27.80         <.0001 14 

 tvc5               1      -0.8973       0.1850      -1.2599      -0.5346       23.52         <.0001 15 

 tvc6              1      -1.4221       0.5421      -2.4846      -0.3597        6.88         0.0087 16 

 tvc_variety   1       0.1729       0.0507       0.0736       0.2722       11.63         0.0006 17 

 qmd2               1      -0.6154       0.1095      -0.8299      -0.4008       31.60         <.0001 18 

 qmd3              1      -0.4339       0.1024      -0.6346      -0.2333       17.97         <.0001 19 

 qmd_variety       1      0.3757       0.0532       0.2714       0.4800       49.88         <.0001 20 

 cc2               1       0.1840       0.1569      -0.1236       0.4915        1.37         0.2410 21 

 cc3               1       0.1727       0.1818      -0.1837       0.5290        0.90         0.3422 22 

 cc_variety         1       0.3035       0.0647       0.1767       0.4302       22.02         <.0001 23 

24 
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Table 9.7:  Third Quartile 1 

                                                         Standard             Wald 95%                    Chi- 2 

 Parameter        DF    Estimate          Error           Confidence Limits            Square        Pr > ChiSq                                                                                                                 3 

 4 

 Intercept           1      -7.1235       0.7644      -8.6218      -5.6252       86.83         <.0001 5 

 aspcos             1      -0.0911       0.0511      -0.1911       0.0090        3.18         0.0745 6 

 aspsin           1      -0.4833       0.0404      -0.5624      -0.4042      143.36         <.0001 7 

 elev               1       0.0019       0.0004       0.0010       0.0028       18.23         <.0001 8 

 slope              1       0.1324       0.0050       0.1226       0.1423      694.85         <.0001 9 

 slope_stdv         1       0.1364       0.0088       0.1192       0.1536      242.52         <.0001 10 

 d2et              1      -0.0108       0.0015      -0.0137      -0.0080       55.67         <.0001 11 

 tvc2              1      -0.9992       0.1358      -1.2653      -0.7330       54.13         <.0001 12 

 tvc3             1      -1.5048       0.1220      -1.7439      -1.2656      152.09         <.0001 13 

 tvc4               1      -1.5628       0.1317      -1.8209      -1.3046      140.76         <.0001 14 

 tvc5              1      -1.7165       0.1435      -1.9976     -1.4353      143.17         <.0001 15 

 tvc6               1      -4.4578       0.4904      -5.4190      -3.4966       82.63         <.0001 16 

 tvc_variety   1       0.2342       0.0395       0.1568       0.3116       35.17         <.0001 17 

 qmd1                 1      -0.3687       0.1311      -0.6257      -0.1118        7.91         0.0049 18 

 qmd2             1      -0.5861       0.1288      -0.8386      -0.3335       20.69         <.0001 19 

 qmd3              1      -0.5310       0.1212      -0.7686      -0.2935       19.20         <.0001 20 

 cc2                1      -0.1024      0.1174      -0.3325       0.1277        0.76         0.3833 21 

 cc3                1      -0.0691       0.1385      -0.3405       0.2023       0.25         0.6177 22 

 cc_variety       1       0.3110       0.0512       0.2106       0.4113      36.87         <.0001 23 

24 
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Table 9.8:  Fourth Quartile (Highest Elevation) 1 

                                                          Standard             Wald 95%                    Chi- 2 

 Parameter        DF    Estimate          Error           Confidence Limits            Square        Pr > ChiSq                                                                                                                                                     3 

 4 

 Intercept          1      -1.3808       0.2082      -1.7890      -0.9727       43.97         <.0001 5 

 aspcos             1      -0.2119       0.0294      -0.2696      -0.1542       51.82         <.0001 6 

 aspsin             1      -0.4271       0.0248      -0.4757      -0.3786      297.45        <.0001 7 

 elev                 1      -0.0004       0.0001      -0.0005      -0.0002       15.00         0.0001 8 

 slope               1       0.0683       0.0023       0.0638       0.0728      881.86         <.0001 9 

 slope_stdv         1       0.0710       0.0055       0.0603       0.0818      167.47         <.0001 10 

 d2et               1     -0.0029       0.0003      -0.0035      -0.0023      101.10        <.0001 11 

 tvc2               1      -0.8212       0.0756      -0.9694      -0.6731      118.04         <.0001 12 

 tvc3                1      -1.0508       0.0663      -1.1807      -0.9209      251.24         <.0001 13 

 tvc4               1      -1.2842       0.0792      -1.4393      -1.1290      263.22         <.0001 14 

 tvc5               1     -1.5925       0.0959      -1.7804      -1.4045      275.74         <.0001 15 

 tvc6                1      -1.2844       0.0601      -1.4022      -1.1667      457.26         <.0001 16 

 tvc_variety   1       0.1668       0.0211       0.1255       0.2081       62.71         <.0001 17 

 qmd1                1      -0.4918       0.1016      -0.6909      -0.2927       23.44         <.0001 18 

 qmd2                 1      -0.4929       0.0995      -0.6880      -0.2979       24.53         <.0001 19 

 qmd3              1      -0.2592       0.0837      -0.4233      -0.0952        9.59         0.0020 20 

 qmd_variety        1          0.1410          0.0304           0.0814           0.2006        21.47        <.0001 21 

 cc2                1      -0.0489      0.0660      -0.1782       0.0805        0.55         0.4590 22 

 cc3                1      0.1502       0.0903      -0.0267       0.3271       2.77        0.0960 23 

 cc_variety       1       0.1540       0.0349       0.0857       0.2223      19.53         <.0001 24 

25 
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Table 10:  Area under the receiver operating curve (AUC) for the weighted models, cut 1 

points and accuracy of correctly classified independent mountain goat locations for the 2 

mountain goat datasets divided into four elevation bands and two geographic regions, 3 

north and south cascades of Washington, with and without a weighting factor 4 

incorporated to account for GPS bias. 5 

 6 

Cascades Elevation     Weighted  Un-weighted  7 

Region  Quartile         AUC cut point accuracy cut point       accuracy 8 

North  1
st
  0.96 0.63  0.89  0.60  0.89 9 

  2
nd

  0.88 0.60  0.80  0.56  0.79 10 

  3
rd

  0.82 0.56  0.75  0.55  0.74 11 

  4
th

  0.77 0.54  0.69  0.53  0.69 12 

South  1
st
  0.99 0.60  0.95  0.59  0.95 13 

  2
nd

  0.97 0.63  0.93  0.59  0.92 14 

  3
rd

  0.94 0.64  0.87  0.62  0.87 15 

  4
th

  0.84 0.54  0.77  0.54  0.76 16 

 17 

18 
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 2 

Fig. 7.  Proportional elevation shifts in mountain goats from different locations showing 3 

the complexities associated with defining calendar-driven mountain goat seasons based 4 

on elevation movements.     5 

 6 

 7 

Fig. 8. Histogram of all GIS-derived mountain goat elevations from GPS points showing 8 

a Gaussian distribution and the range of observed values (Frequency = Percentage of 9 

Fixes).  10 
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 1 

Fig. 9.  Distribution of mountain goat locations acquired by month within each elevation 2 

quartile:  1
st
 (300-1187 m), 2

nd
(1187-1455 m), 3

rd
(1455-1670 m) & 4

th
(1670-3000 m).  3 

The total number of fixes for the 1
st
 through 4

th
 quartile was, 21,598, 21,633, 21,609 and 4 

21,988 respectively.   5 

 6 
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 1 

Fig. 10.  Empirical cumulative frequency distributions of available (dotted) vs. goat 2 

locations (solid) for derived topographic predictor variables suggesting selection for areas 3 

closer to escape terrain and steeper slopes.   4 



 56 

 1 

Fig. 11.  Map showing continuous data layer of predicted potential mountain goat habitat 2 

for the western cascades of Washington based on elevation quartiles from the northern 3 

and southern halves of the Cascades, split along I-90, based on data from 39 GPS collared 4 

animals. 5 
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 1 

Fig. 12.  Close up view of predicted potential mountain goat habitat in the vicinity of Mt. Baker, WA showing fairly contiguous 2 

habitat patches around the mountain.  Blue designates high predicted probability while red denotes low3 
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 1 

Fig. 13.  Close up view of predicted potential mountain goat habitat around the Three Fingers-Whitehorse mountain complex (to the 2 

right) and of Glacier Peak, WA (to the left) showing a distinct isolation of the area from more easterly habitats.  Blue designates high 3 

predicted probability while red denotes low.  4 
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 1 

Fig. 14.  Predicted potential mountain goat habitat around Mt. Rainier, WA showing a more striated pattern of habitat patches then 2 

those around Mt. Baker.  Blue designates high predicted probability while red denotes low, with the grey summit falling above the 3 

highest observed mountain goat elevations and consequently outside of the analysis.    4 
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 1 

Fig. 15.  Close up view of the area east of Mt. Baker, WA encompassing the North Cascade National Park and the Pickett Range 2 

showing some of the highest quality and most well connected predicted habitat despite having few observed mountain goats.  The 3 

Canadian border forms the northern border of the image. 4 
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 1 

Fig. 16.  Close up view of Garfield Mt. in the middle Cascades, a region with lots of predicted potential habitat but few mountain 2 

goats.  Blue designates high predicted probability while red denotes low.  3 
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 1 

Fig. 17.  Close up view of the southern Cascades depicting a more disjointed landscape of mountain goat habitat although supporting 2 

known populations of animals.  Goat Rocks Wilderness area appears in the upper right, Mt. Adams (with marginal habitat at best) in 3 

the lower right and Mt. St. Helens in the lower left.  Blue designates high predicted probability while red denotes low. 4 
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Appendix 1 

A.  Sky Visibility  2 

   The sky visibility algorithm performed a discrete approximation of a hemispherical 3 

integral and worked with a large DEM.  The algorithm generated a series of hillshade 4 

grids, each with the sun at a different elevation and azimuth angle.  For a given sun 5 

elevation and azimuth, the hillshade function determined whether each grid cell fell in 6 

full sun or shadow.  A final output grid consisted of a weighted tally of the number of 7 

“sun hits” each grid cell received.  This weighted tally expressed the percentage of the 8 

maximum possible number of “sun hits” (the number of azimuth angles times the number 9 

of elevation angles).  Each of the initial grids received weighting using the cosine of the 10 

elevation angle.  This weighting corrected for the fact that low elevation angles 11 

represented a greater section of sky than high elevation angles.  The net result quantified 12 

the percentage of the sky visible from each grid cell, based on surrounding topography.  13 

Unobstructed sky provided access to more satellites; topographic obstructions in one or 14 

more portions of the sky blocked access    15 

16 
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B. Non-linear mixed macro 1 

This is the macro written for implementation in SAS that executed the non-linear mixed 2 

modeling scheme for the GPS PAR model.  The model executes an ordinary logistic 3 

regression to generate initial parameter estimates prior to using the non-linear modeling.  4 

This macro was used during model selection to account for the random effects error 5 

structure due to the repeated measure of GPS PAR at each sample site. 6 

 7 

%macro Logisticmixed(data1,data2,depvar,nvars,nparm,variables,parms); 8 

title "Initial logistic fit with covariates:&variables"; 9 

proc logistic data=&data1 descending outest=betas; 10 

    model &depvar= &variables /aggregate=(cluster) scale=none rsquare lackfit; 11 

 ods output FitStatistics=Fitstat LackFitChiSq=HLtest RSquare=r2; 12 

*GoodnessOfFit=gof; 13 

data betas; set betas;  14 

array x{&nparm} intercept &variables; 15 

array b{&nparm} &parms; 16 

 do i=1 to &nparm; 17 

    b{i}=x{i}; 18 

   end; 19 

 keep &parms; 20 

 21 

proc nlmixed data=&data1 technique=nrridg maxiter=500 maxfunc=500; 22 

parms s=1 / data=&data2; 23 

 array b{&nparm} &parms; 24 

 array x{&nvars} &variables; 25 

 eta=ranvar+b{1}; 26 

 do i=1 to &nvars ; 27 

   eta=eta+b{i+1}*x{i}; 28 

   end; 29 

  model &depvar ~ binary(1-1/exp(eta)); 30 

  random  ranvar ~ normal(0,s*s) subject=cluster; 31 
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  ods output FitStatistics=FitStatistics; 1 

   2 

data mixedresult; 3 

   set FitStatistics; 4 

   length variables $ 50; 5 

   keep AICc variables; 6 

   if Descr= "AICC (smaller is better)" then do; 7 

       AICc=Value; 8 

    variables= "&variables"; 9 

    output; 10 

  end; 11 

   title "subset:&variables"; 12 

   data summary; set summary mixedresult Fitstat HLtest r2 ; 13 

   run; 14 

 15 

%mend logisticmixed: 16 


